If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3.5t^2-13t-120=0
a = 3.5; b = -13; c = -120;
Δ = b2-4ac
Δ = -132-4·3.5·(-120)
Δ = 1849
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1849}=43$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-43}{2*3.5}=\frac{-30}{7} =-4+2/7 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+43}{2*3.5}=\frac{56}{7} =8 $
| 0.333(x+0.5)=0.5(0.5x+1) | | -15-10z=-12z+5 | | 6.9=8^x | | 4a-3(a-2)=(3a+-2) | | 16n-18=14n | | 4a-3(a+-2)=(3a+-2 | | -18q=-17q+11 | | 19p+10=6+20p | | 18g-18=19g+2g+9 | | 24-v=205 | | 〖3x〗^2-21x-6=0 | | y=21÷58 | | 3x^2-19x+3=0 | | 13/14=91/x | | 4m-5(3m+10)=-126 | | 5/2y=11 | | 2w+-3=-14.8 | | 1(1+r)^10=2 | | 0.75x-6=7x+3 | | 3/4x-6=7x+3 | | 2(3x-12)=3(2x-8) | | 8x+16=189 | | 1^2(x+8^3)=9^2 | | 3y+32y+12=0 | | 1/2(x+8/3)=9/2 | | 6.78+k=7.89 | | -2-7q=-8q-8 | | 3x-12/6=2x-8/4 | | y=12÷11.2 | | -2y=-9-y | | 2g-9=g | | 7.5t^2+30t-120=0 |